Skip to content

ROC curves#

In the following a small example how to plot a roc curve with the puma API.

Then we can start the actual plotting part:

"""Produce roc curves from tagger output and labels."""

from __future__ import annotations

import numpy as np
from ftag import get_discriminant

from puma import Roc, RocPlot
from puma.metrics import calc_rej
from puma.utils import get_dummy_2_taggers, logger

# The line below generates dummy data which is similar to a NN output
df = get_dummy_2_taggers(add_pt=True)

logger.info("caclulate tagger discriminants")
discs_rnnip = get_discriminant(df, "rnnip", signal="bjets", fc=0.018)
discs_dips = get_discriminant(df, "dips", signal="bjets", fc=0.018)

# defining target efficiency
sig_eff = np.linspace(0.49, 1, 20)

# defining boolean arrays to select the different flavour classes
is_light = df["HadronConeExclTruthLabelID"] == 0
is_c = df["HadronConeExclTruthLabelID"] == 4
is_b = df["HadronConeExclTruthLabelID"] == 5

n_jets_light = sum(is_light)
n_jets_c = sum(is_c)

logger.info("Calculate rejection")
rnnip_ujets_rej = calc_rej(discs_rnnip[is_b], discs_rnnip[is_light], sig_eff)
rnnip_cjets_rej = calc_rej(discs_rnnip[is_b], discs_rnnip[is_c], sig_eff)
dips_ujets_rej = calc_rej(discs_dips[is_b], discs_dips[is_light], sig_eff)
dips_cjets_rej = calc_rej(discs_dips[is_b], discs_dips[is_c], sig_eff)

# here the plotting of the roc starts
logger.info("Plotting ROC curves.")
plot_roc = RocPlot(
    n_ratio_panels=2,
    ylabel="Background rejection",
    xlabel="$b$-jet efficiency",
    atlas_second_tag="$\\sqrt{s}=13$ TeV, dummy jets \ndummy sample, $f_{c}=0.018$",
    figsize=(6.5, 6),
    y_scale=1.4,
)
plot_roc.add_roc(
    Roc(
        sig_eff,
        rnnip_ujets_rej,
        n_test=n_jets_light,
        rej_class="ujets",
        signal_class="bjets",
        label="RNNIP",
    ),
    reference=True,
)
plot_roc.add_roc(
    Roc(
        sig_eff,
        dips_ujets_rej,
        n_test=n_jets_light,
        rej_class="ujets",
        signal_class="bjets",
        label="DIPS r22",
    ),
)
plot_roc.add_roc(
    Roc(
        sig_eff,
        rnnip_cjets_rej,
        n_test=n_jets_c,
        rej_class="cjets",
        signal_class="bjets",
        label="RNNIP",
    ),
    reference=True,
)
plot_roc.add_roc(
    Roc(
        sig_eff,
        dips_cjets_rej,
        n_test=n_jets_c,
        rej_class="cjets",
        signal_class="bjets",
        label="DIPS r22",
    ),
)
# setting which flavour rejection ratio is drawn in which ratio panel
plot_roc.set_ratio_class(1, "ujets")
plot_roc.set_ratio_class(2, "cjets")

plot_roc.draw()
plot_roc.savefig("roc.png", transparent=False)