ftag#
atlas-ftag-tools - Common tools for ATLAS flavour tagging software.
Submodules#
Attributes#
Classes#
Functions#
|
|
|
Calculate the working points. |
Package Contents#
- ftag.__version__ = 'v0.2.13'#
- class ftag.Cuts#
-
- __post_init__()#
- property variables: list[str]#
- ignore(variables: list[str])#
- __call__(array: numpy.ndarray) CutsResult #
- __len__() int #
- __iter__() collections.abc.Iterator #
- __getitem__(variable)#
- __repr__() str #
- ftag.Flavours#
- class ftag.Label#
- name: str#
- label: str#
- cuts: ftag.cuts.Cuts#
- colour: str#
- category: str#
- _px: str | None = None#
- property px: str#
- property eff_str: str#
- property rej_str: str#
- property frac_str: str#
- __str__() str #
- __lt__(other) bool #
- class ftag.LabelContainer#
-
- __iter__() collections.abc.Iterator #
- __len__() int #
- __eq__(other) bool #
- __repr__() str #
- property categories: list[str]#
- by_category(category: str) LabelContainer #
- from_cuts(cuts: list | ftag.cuts.Cuts) Label #
- classmethod from_yaml(yaml_path: pathlib.Path | None = None) LabelContainer #
- classmethod from_list(labels: list[Label]) LabelContainer #
- backgrounds(signal: Label, only_signals: bool = True) LabelContainer #
- ftag.get_mock_file(num_jets=1000, fname: str | None = None, tracks_name: str = 'tracks', num_tracks: int = 40) tuple[str, h5py.File] #
- class ftag.Sample#
- pattern: pathlib.Path | str | tuple[pathlib.Path | str, Ellipsis]#
- ntuple_dir: pathlib.Path | str | None = None#
- name: str | None = None#
- weights: list[float] | None = None#
- __post_init__() None #
- property path: tuple[pathlib.Path, Ellipsis]#
- property files: list[str]#
- property num_files: int#
- property dsid: list[str]#
- property sample_id: list[str]#
- property tags: list[str]#
- property ptag: list[str]#
- property rtag: list[str]#
- property dumper_tag: list[str]#
- virtual_file(**kwargs) list[pathlib.Path | str] #
- __str__()#
- __lt__(other)#
- __eq__(other)#
- class ftag.Transform#
- variable_map: dict[str, dict[str, str]] | None = None#
- ints_map: dict[str, dict[str, dict[int, int]]] | None = None#
- floats_map: dict[str, dict[str, str | Callable]] | None = None#
- __post_init__()#
- __call__(batch: Batch) Batch #
- map_variables(batch: Batch) Batch #
Rename variables in a batch of data.
- Parameters:
batch (Batch) – Dict of structured numpy arrays.
- Returns:
Dict of structured numpy arrays with renamed variables.
- Return type:
Batch
- map_ints(batch: Batch) Batch #
Map integer values to new values.
- Parameters:
batch (Batch) – Dict of structured numpy arrays.
- Returns:
Dict of structured numpy arrays with mapped integer values.
- Return type:
Batch
- map_floats(batch: Batch) Batch #
Transform float values.
- Parameters:
batch (Batch) – Dict of structured numpy arrays.
- Returns:
Dict of structured numpy arrays with transformed float values.
- Return type:
Batch
- map_dtype(name: str, dtype: numpy.dtype) numpy.dtype #
- map_variable_names(name: str, variables: list[str], inverse=False) list[str] #
- ftag.get_working_points(args: argparse.Namespace) dict | None #
Calculate the working points.
- Parameters:
args (argparse.Namespace) – Input arguments from the argparser
- Returns:
Dict with the working points. If args.outfile is given, the function returns None and stored the resulting dict in a yaml file in args.outfile.
- Return type:
dict | None